

Datenblatt

Zahnradpumpen R4,5/35 bis R6,0/160 UNI

Herausgeber RICKMEIER GmbH Langenholthauser Straße 20-22 D-58802 Balve

Telefon +49 (0) 23 75 / 9 27-0 Telefax +49 (0) 23 75 / 9 27-26 kontakt@rickmeier.de www.rickmeier.de

© 2020, RICKMEIER GmbH Technische Änderungen vorbehalten.

Alle Rechte vorbehalten. Inhalte dürfen ohne schriftliche Zustimmung der RICKMEIER GmbH weder verbreitet, vervielfältigt, bearbeitet noch an Dritte weitergegeben werden.

Auf der Titelseite ist eine Beispielkonfiguration abgebildet. Das ausgelieferte Produkt kann daher von der Abbildung abweichen.

Inhaltsverzeichnis

1	Allgemeines	4
2	Einsatzgebiete	5
3	Beschreibung	6
	3.1 Aufbau	6
	3.2 Produktbeschreibung	6
4	Funktionsprinzip	7
5	Dreh- und Durchflussrichtung	8
6	Standardausführung und Varianten	9
	6.1 Werkstoffe	9
	6.2 Gehäusevarianten	10
	6.3 Antriebskonzepte	11
	6.4 Vorsatzlager	11
	6.5 Rückschlagventil	12
	6.6 Geräuschoptimierung	12
7	Bezeichnung und Konfiguration	13
	7.1 Typenschlüssel	13
	7.2 Pumpenauswahl	
	7.2.1 Baugröße (Typ) / Geometrisches Verdrängungsvolumen Vg	
	7.2.2 Genausevariante	
	7.2.4 Werkstoffe	14
	7.2.5 Weitere Optionen	
	7.3 Pumpenauslegung	15
8	Technische Daten	16
	8.1 Einsatzgrenzen	16
	8.2 Betriebsdaten	16
9	Maßblätter UNI-Pumpen	18
	9.1 Baugröße R4,5	18
	9.2 Baugröße R6.0	19

1 Allgemeines

Die technischen Angaben in diesem Katalog dienen der allgemeinen Information. Bei Montage, Betrieb und Wartung sind die Betriebsanleitungen und die auf den Produkten angegebenen Hinweise unbedingt zu beachten.

Änderungen der technischen Daten, Auswahl- und Bestelldaten, beim Zubehör und der Lieferbarkeit sind vorbehalten.

Alle Abmessungen in Millimeter.

2 Einsatzgebiete

RICKMEIER Zahnradpumpen kommen in der Ölhydraulik, der Schmiertechnik und beim Transport unterschiedlichster Öle oder schmierfähiger Flüssigkeiten zum Einsatz.

Typische Einsatzgebiete		
Allgemeiner Maschinenbau	Automobilbau	Apparatebau
Baumaschinen	Bergwerkstechnik	
Chemieanlagenbau		
Dieselmotoren	Druckereimaschinen	
Elektromotorenbau		
Fahrzeugtechnik		
Gasturbinen	Getriebe	Gießereitechnik
Holzbearbeitungstechnik		
Industriegetriebebau		
Kältetechnik	Kompressorenbau	Kraftwerkstechnik
Motorenbau		
Papiermaschinen	Pumpenbau	
Schiffbau		
Textilmaschinen		
V erdichterbau		
Wasserturbinen	Walzwerkindustrie	Werkzeugmaschinen
Windenergieerzeugung		
Zementanlagenbau		

Typische Fördermedien					
ATF-Öl					
Hydrauliköl					
Polyalphaolefinöl					
Schweröl					
Andere Fördermedien auf Anfrage					

Abb. 1: Anwendungsbeispiele

TB3-6NNN-112_DE • 00 5 / 19

3 Beschreibung

3.1 Aufbau

Abb. 2: UNI-Pumpe

1 Außengehäuse mit Rohranschlüssen	2 Rädergehäuse
3 Antriebsradwelle	4 Hohlrad

3.2 Produktbeschreibung

RICKMEIER UNI-Pumpen fördern immer in eine Durchflussrichtung. Diese Eigenschaft prädestiniert die UNI-Pumpen für alle Anwendungen, bei denen eine Umkehr der Durchflussrichtung unerwünscht ist. Bei Drehrichtungsumkehr schaltet die UNI-Pumpe selbsttätig um und behält dabei die Durchflussrichtung bei. Das durchdachte Design mit einer minimalen Anzahl an Bauteilen hat erhebliche Vorteile gegenüber anderen Lösungen.

RICKMEIER UNI-Pumpen zeichnen sich durch eine kompakte Bauweise aus, so dass sie in enge Bauräume integriert werden können (z. B. in Windkraftanlagen, Schiffsgetrieben und Gasgeneratoren).

Gegenüber anderen Lösungen hat die RICKMEIER UNI-Pumpe auch bei hohen Viskositäten nur geringe Strömungswiderstände, d. h. die internen Druckverluste sind gering.

RICKMEIER UNI-Pumpen besitzen keine Verschleißteile wie Dichtungen und Ventile, wodurch sie äußerst wartungsarm sind und daher ohne Wartungsaufwand über sehr lange Betriebszeiten eingesetzt werden können.

4 Funktionsprinzip

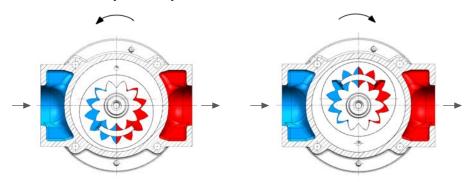


Abb. 3: Förderprinzip der Innenzahnradpumpe

UNI-Pumpen sind innenverzahnte Zahnradpumpen und damit rotierende Verdrängerpumpen. Bei Drehung der Antriebsradwelle und des Hohlrades wird das in den Zahnzwischenräumen eingeschlossene Medium von der Saug- zur Druckseite transportiert und dort durch die ineinander greifenden Zähne zur Druckseite hin verdrängt. Saug- und Druckseite werden durch eine Sichel gegeneinander abgedichtet. Durch den Transport des Fördermediums entsteht auf der Saugseite der Zahnradpumpe eine Druckabsenkung. Das Fördermedium gleicht diese Druckabsenkung durch Nachströmen aus und erhält den Förderprozess dadurch aufrecht.

Dieser Vorgang erfolgt bei gasförmigen wie flüssigen Medien in gleicher Weise. Hierdurch ist die Zahnradpumpe in der Lage, die Saugleitung selbst zu entlüften, bis sie vollständig mit flüssigem Fördermedium gefüllt ist.

Hinweis

Die Entlüftung der Saugleitung ist unter folgenden Voraussetzungen nicht möglich:

- Die Saugleitung ist undicht, so dass sich kein Unterdruck aufbauen kann.
- Der Druck im saugseitigen Rohrleitungssystem bzw. Behälter ist zu gering, um ein Nachströmen des Fördermediums zuzulassen. Dies ist bei Vakuum möglich oder wenn sich der Flüssigkeitsspiegel zu weit unterhalb der Zahnradpumpe befindet.

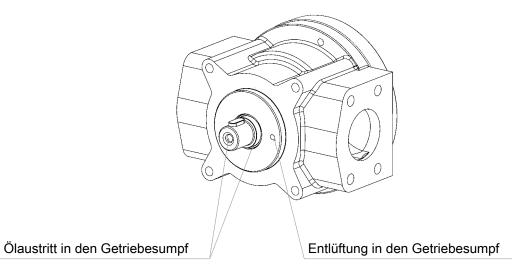


Abb. 4: Lagerölaustritt und Dauerentlüftung

Um das Entlüften des Systems zu unterstützen, besitzen alle UNI-Pumpen eine Dauerentlüftung Durchmesser 1,5 mm auf der Druckseite.

Zusätzlich ist es empfehlenswert, ein Entlüftungsventil in der Druckleitung des Systems vorzusehen.

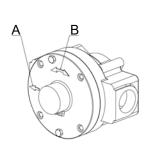
TB3-6NNN-112_DE • 00 7 / 19

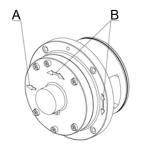
Hinweis

RICKMEIER UNI-Pumpen besitzen keinen Wellendichtring, da sie für den Direktanbau vorgesehen sind (z. B. an Getriebegehäuse). Das Lageröl der Zahnradpumpe läuft aus dem antriebsseitigen Gleitlager und der durchbohrten Antriebsradwelle in den Ölsumpf.

Hinweis

Stellen Sie sicher, dass im Moment des Umschaltens sowohl die Saug- als auch die Druckleitung drucklos ist.


Stellen Sie sicher, dass im Nennbetrieb der Druck auf der Austrittsseite der Zahnradpumpe mindestens 1 bar (manometrisch) beträgt.



Hinweis

Die Zahnradpumpe muss über ein externes Druckbegrenzungsventil abgesichert werden.

5 Dreh- und Durchflussrichtung

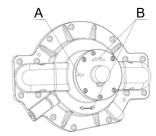


Abb. 5: Dreh- und Durchflussrichtung

A Durchflussrichtungspfeil

B Drehrichtungspfeil

Die Drehrichtung der Zahnradpumpe ist beliebig und wird durch den Drehrichtungspfeil auf der Zahnradpumpe gekennzeichnet.

Die Durchflussrichtung der Zahnradpumpe ist gleichbleibend und wird durch den Durchflussrichtungspfeil auf dem Schlussdeckel der Zahnradpumpe gekennzeichnet.

6 Standardausführung und Varianten

Das variable Baukastensystem der RICKMEIER UNI-Pumpen ermöglicht es, unterschiedlichste Material-, Gehäuse- und Funktionsvarianten zu realisieren.

Neben einer Standardausführung können die Zahnradpumpen aufgrund der vielfältigen, variablen Möglichkeiten an den jeweiligen Anwendungszweck angepasst werden.

6.1 Werkstoffe

	Standard	Alternativ
Gehäuse	- EN-GJL-250 (GG-25)	
Radwellen	Gehärteter Einsatzstahl (16MnCrS5)	
O-Ringe	- FKM	- HNBR
		- EPDM
		 weitere auf Anfrage
Gleitlager	 Verbundlager Typ P10/DU 	 blei- und buntmetallfreie Gleitlager
		 weitere auf Anfrage
Korrosionsschutz	 Lackierung auf 2-Kompo- nentenbasis RAL 5002 	 diverse Beschichtungsstoffe und -aufbauten auf Anfrage, z. B. ähnlich DIN EN ISO 12944-C4

Tab. 1: Werkstoffe

TB3-6NNN-112_DE • 00 9 / 19

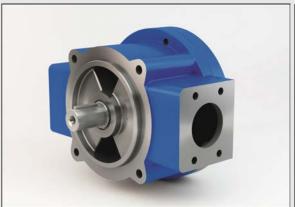
6.2 Gehäusevarianten

Standardmäßig sind die Rohranschlüsse mit SAE-Flanschbild nach DIN ISO 6162 ausgeführt. Es können je nach Kundenanforderung alternativ beliebige anwendungsbezogene Gehäusevarianten geliefert werden.

Standard

Alternativ (kundenspezifische Lösungen in beliebiger Form)

nach DIN ISO 6162


Flanschpumpe mit metrischem SAE-Flanschbild Flanschpumpe mit Einschraubloch (Gewinde)

Beispiel R4,5 (SAE 2, Nennweite 50)

Beispiel R4,5/45 Steckpumpe zum Einbau

Beispiel R6,0 (SAE 2.1/2, Nennweite 65)

Plattenaufbaupumpe, integrierte Rohrleitungen

Beispiel R4,0/35

Tab. 2: Ausführungsvarianten Gehäuse

6.3 Antriebskonzepte

Standard

In der Standardausführung sind die UNI-Pumpen mit zylindrischem Wellenende und Passfeder ausgestattet.

Zur Adaption an Kundenschnittstellen sind Wellenenden unterschiedlichster Bauform möglich oder können mit Antriebsritzel bzw. Kupplung ausgestattet werden.

Zylindrisch, mit Passfeder

Alternativ

Antriebszahnrad mit zusätzlicher Lagerung

Beispiel R6,0/80

Beispiel R4,5/54 Mit Kupplung

Tab. 3: Ausführungsvarianten Antriebskonzepte

6.4 Vorsatzlager

Optional, z. B. bei erhöhter Radialbelastung am Wellenzapfen oder Ritzelantrieb, kann eine zusätzliche Lagerung im Pumpengehäuse vorgesehen werden. Darüber hinaus können für spezielle Anwendungsfälle separate Vorsatzlagereinheiten konzipiert werden.

Abb. 6: UNI-Pumpe mit zusätzlichem Vorsatzlager (Beispiel R6,0/100)

TB3-6NNN-112_DE • 00 11 / 19

6.5 Rückschlagventil

Beim Umschalten der UNI-Pumpe bei Drehrichtungswechsel müssen sowohl Saug- als auch Druckseite drucklos sein. Um dies sicher zu gewährleisten, kann als Sonderausführung optional ein Rückschlagventil im Druckstutzen der Pumpe integriert werden.

Abb. 7: UNI-Pumpe mit Rückschlagventil auf der Druckseite (Beispiel R6,0/160)

6.6 Geräuschoptimierung

Die RICKMEIER UNI-Pumpe ist im Vergleich zu anderen Bauarten besonders geräuscharm. Bei Anwendungen mit Fördermedien mit erhöhtem Luftanteil ist häufig eine deutliche Geräuschbelastung durch die Zahnradpumpe festzustellen. Die Pumpengehäuse der UNI-Pumpen können optional mit einer internen Zusatzbearbeitung versehen werden, die in diesem Fall eine deutliche Reduzierung des Schalldruckpegels bewirkt.

Je nach Betriebsdaten und Luftanteil sind Schalldruckpegelreduzierungen von bis zu 15 dB(A) möglich. Förderperformance und Wirkungsgrad der Zahnradpumpe werden dadurch nicht negativ beeinflusst, allerdings ist bei nicht lufthaltigem Fördermedium durch diese Modifikation keine Geräuschreduzierung zu erwarten.

Hinweis

Alternativ zur UNI-Pumpe kann für bestimmte Anwendungen auch unsere Standard-Baureihe R5 mit einem UNI-Ventil ausgerüstet werden. Dabei wird die Beibehaltung der Durchflussrichtung bei Drehrichtungsänderung über im Schlussdeckel integrierte, federbelastete Umschaltventile realisiert.

Abb. 8: Standard-Baureihe R5 mit UNI-Ventil (Beispiel R45/160)

7 Bezeichnung und Konfiguration

7.1 Typenschlüssel

Die Bezeichnung der RICKMEIER UNI-Pumpen erfolgt nach folgendem Schlüssel:

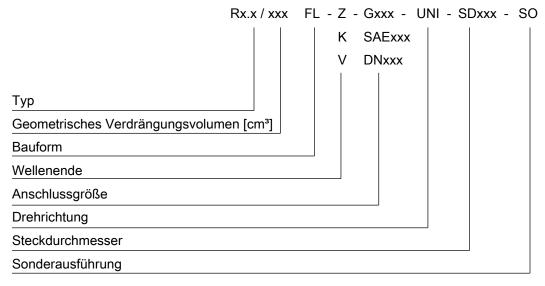


Abb. 9: Typenschlüssel

7.2 Pumpenauswahl

Anhand nachfolgender Auswahltabellen können Sie die gewünschte Pumpenausführung durch Ankreuzen konfigurieren. Die ausgefüllten Blätter können Sie uns zusammen mit Ihrer Anfrage zusenden.

Für viele Anwendungen sind die **fett** gedruckten Standardausführungen ausreichend. Zu näheren Informationen zu den genannten Optionen und Varianten sprechen Sie uns bitte an.

Die Auslegung der Zahnradpumpen kann natürlich auch durch unsere Unterstützung erfolgen. In diesem Fall sprechen Sie uns bitte an; verwenden Sie bitte die Tabelle im nachfolgenden Kapitel "Pumpenauslegung".

7.2.1	Baugröße	(Typ)	/ (Geometrisches	Verdrängungsvolumen	۷ç	J
-------	----------	-------	-----	---------------	---------------------	----	---

R4,5	35	39	45	54	63
R6,0	80	100	125	160	

[→] Bitte ein Verdrängungsvolumen V_g [cm³] auswählen!

7.2.2 Gehäusevariante

SAE	Flanschpumpe (SAE-Flanschbild)
G	Flanschpumpe (Gewinde-Anschluss)
SD	Steckpumpe
	Plattenaufbaupumpe (rohrleitungsfrei)
	Sonstige

TB3-6NNN-112_DE • 00 13 / 19

[→] Bitte eine Bauform auswählen!

7.2.3	Antriebskonzept / Wellenende				
	Z	Zylindrisches Wellenende mit Passfeder			
	К	Kegeliges Wellenende			
	V	Verzahnung (DIN 5480)			
		Sonstige			
	→ Bitte ein Wellenende ausw	ählen!			
7.2.4	Werkstoffe				
	Gehäuse	EN-GJL-250 (GG-25)			
	O-Ringe	FKM			
		Alternativ: HNBR, EPDM, weitere auf Anfrage			
	Gleitlager	Verbundlager Typ P10/DU			
		Alternativ: blei- und buntmetallfreie Gleitlager, weitere auf Anfrage			
	Beschichtung	Lackierung auf 2-Komponentenbasis RAL 5002			
		Alternativ: andere Farbtöne, Beschichtungsstoffe und -aufbauten auf Anfrage			
	→ Bitte Werkstoffe für O-Ring	e, Gleitlager und Beschichtung auswählen!			
7.2.5	Weitere Optionen				
	Vorsatzlager/-einheit	Für erhöhte Radialbelastung am Wellenzapfen			
	Rückschlagventil im Druckanschluss	Für druckloses Umschalten			
	Geräuschoptimierung	Bei Fördermedien mit erhöhtem Luftanteil			
		wünschte optionale Ausführungen! Für nähere Informationen bzw. Ingsdetails sprechen Sie uns bitte an.			
	Weitere Angaben zur Pump	enauswahl:			

7.3 Pumpenauslegung

Wenn Sie eine technische Auslegung durch uns wünschen oder der Betrieb außerhalb der im folgenden Kapitel genannten Grenzen geplant ist, bitten wir um Angabe folgender Daten:

Gewünschte Fördermenge (dauerhaft):	L/min
Drehzahl:	
- dauerhaft	1/min
- min. / max.	1/min
Eintrittsdruck (manometrisch):	
- dauerhaft	bar
- min. / max.	bar
Austrittsdruck (manometrisch):	
dauerhaft	bar
- max.	bar
Umgebungstemperatur:	
- dauerhaft	°C
- min. / max.	°C
Fördermedientemperatur:	
dauerhaft	°C
- min. / max.	°C
Kinematische Viskosität:	
- dauerhaft	mm²/s
- min. / max.	mm²/s
Fördermedium:	
Weitere Angaben zur Pumpenauslegung:	

TB3-6NNN-112_DE • 00 15 / 19

8 Technische Daten

8.1 Einsatzgrenzen

Nachfolgend werden die maximal zulässigen Betriebsbedingungen für UNI-Pumpen in der Standardausführung beschrieben. Kontaktieren Sie RICKMEIER, wann immer eine Über- oder Unterschreitung dieser Angaben erforderlich ist.

Als Voraussetzung für lange Lebensdauer und höchste Betriebssicherheit soll das Fördermedium schmierfähig und nach Möglichkeit sauber und nicht korrosiv sein, in jedem Fall aber frei von harten Beimengungen.

Zusätzlich gelten folgende Bereiche:

Eigenschaften		Min.	Max.
Fördermedium	kinematische Viskosität	$5 \text{ mm}^2/\text{s}^{-1)}$	100000 mm ² /s ¹⁾
	Verschmutzungsgrad (nach ISO 4406:1999, max.)		21/19/17
	Gasgehalt (ungelöst, max.)		10 Vol% ²⁾
	Temperatur (FKM Dichtungen)	-40 °C	100 °C
Eintrittsdruck (Dauerdruck r	-0,5 bar 4)	0 bar	

Tab. 4: Einsatzgrenzen

8.2 Betriebsdaten

Baugröße	Fördervolu- men	Maximal zulässige Be- triebsdaten		Richtwerte		
				Siehe Legende 1)		
		Betriebs- druck ²⁾	Drehzahl	Förderstrom	Leistungs- bedarf	Schall- druckpe- gel 3)
	Vg [cm³]	p [bar]	n [1/min]	Q [dm³/min]	P [kW]	Lp(A) [dB(A)]
R4,5	35	25 22	2200	49	0,7	70
	39			54	0,8	
	45			63	0,9	
	54	25	2200	76	1,1	67
	63			89	1,2	
R6,0	80	25	2200	113	1,6	76
	100			141	2,0	
	125	25	2200	176	2,5	72
	160			226	3,2	

Tab. 5: Technische Daten

¹⁾ Abhängig von Anwendung und Betriebsbedingungen sind niedrigere bzw. höhere Viskositäten möglich, bitte sprechen Sie uns an.

²⁾Ungelöstes Gas im Fördermedium kann höhere Geräuschemissionen verursachen.

³⁾ Manometrisch

⁴⁾ Kurzzeitig auch niedriger (z. B. im Anfahrzustand), bitte sprechen Sie uns an.

¹⁾ Drehzahl = 1450 1/min, Viskosität = 33 mm²/s, Betriebsdruck = 5 bar

²⁾ Vermeiden Sie hohe Betriebsdrücke bei niedriger Drehzahl. Im Nennbetrieb muss sichergestellt sein, dass der Druck auf der Austrittsseite der Pumpe mind. 1 bar (manometrisch) beträgt. Sprechen Sie uns bitte an, um die zulässige Minimal-Drehzahl für Ihren Anwendungsfall zu ermitteln.

³⁾ Die angegebenen Schalldruckpegelwerte gelten für kavitationsfreien Betrieb der UNI-Pumpe auf dem Prüfstand (Abstand zur Pumpe 1 m).

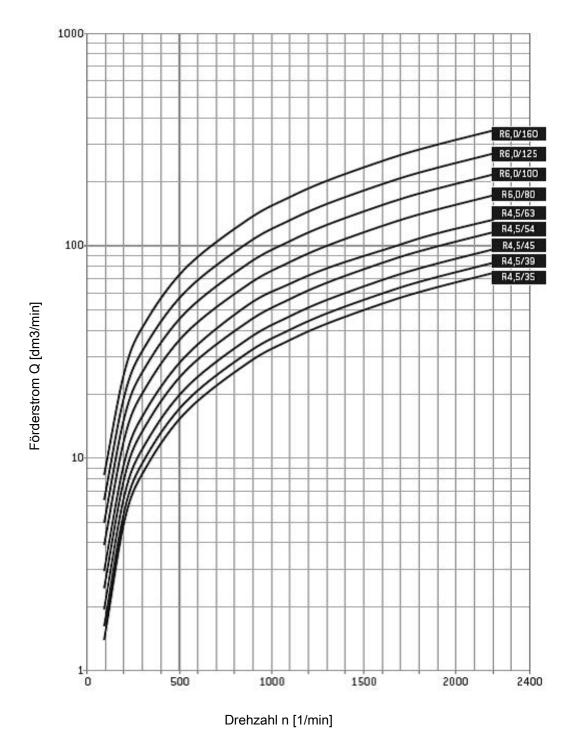
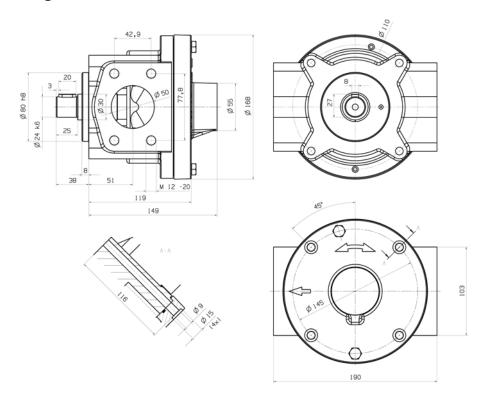
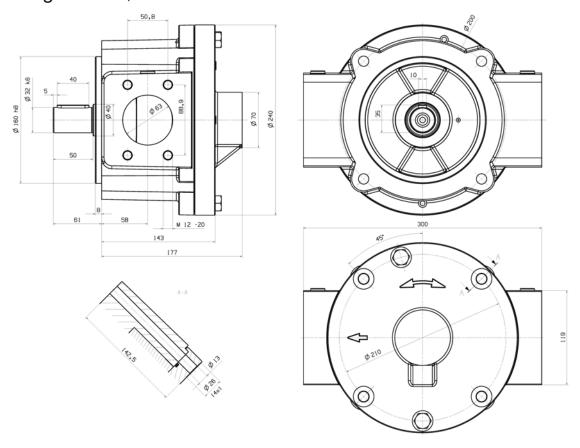


Abb. 10: Förderstrom versus Drehzahl (Werte gelten für kinematische Viskosität = 100 mm²/s und Austrittsdruck p_2 = 12 bar)


TB3-6NNN-112_DE • 00 17 / 19

9 Maßblätter UNI-Pumpen

Auf den folgenden Seiten finden Sie Abmessungen der UNI-Pumpen in der Grundausführung. Bei Fragen zur Auslegung sowie zu speziellen Ausführungen wenden Sie sich bitte an uns.


9.1 Baugröße R4,5

Verdrängungsvolumen [cm³]	35 / 39 / 45 / 54 / 63
Gewicht [kg]	ca. 16
Flanschgröße Saug- und Druckanschluss	SAE 2

9.2 Baugröße R6,0

Verdrängungsvolumen [cm³]	80 / 100 / 125 / 160
Gewicht [kg]	ca. 40
Flanschgröße Saug- und Druckanschluss	SAE 2.1/2

TB3-6NNN-112_DE • 00 19 / 19